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Abstract

Wadsworth—Emmons reactions between different aldehydes including aliphatic, aromatic, cyclic and heterocyclic with various phosphonates
affordsa,3-unsaturated nitriles and esters under mild conditions without the formation of by-products such as Michael or Knoevenagel products
using a nanocrystalline MgO catalyst.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction ketones using nanocrystalline MgO, since these materials
have basic sites in high dens[t8].

Wadsworth—-Emmons reaction (WE) belongs to a class Herein we report the use of recyclable nanocrystalline
of C—C bond formation reactions, which finds wide appli- magnesium oxide for the WE reaction to affordp-
cations in the fine chemical industry for the manufacture of unsaturated esters, nitriles with excellent yields under mild
perfumes, fragrances, analgesics, insecticides, carotenoidsconditions without the formation of by-produc&gheme L
pheromones, pharmaceuticals and prostaglandisg]. In
general these reactions are effected under homogeneous
conditions using various strong soluble bases such as KOH,2, Experimental
Ba(OH), BuLi, KoCOs, 18 crown-6, KOtBu and NaOEt

in stoichiometric quantities{?—ll]. Industry favors the A mixture of Carbony| Compound (1 mmo|), phosphonate
use of heterogeneous catalysts in view of its simple work (1 mmol), NAP-MgO (0.075 g) was stirred in a 50-ml round-
up and recycling. In the direction of heterogenization, pottomed flask containing 5ml of toluene. The stirring was
commercially available MgO, ZnO, KF/alumind2-14] continued at reflux temperature to effect the condensation
in stoichiometric amounts and mixed oxides of lanthanum reaction of the Carbony| Compound with phosphonate un-
and magnesiunil5], hydrotalcite supportedert-butoxide  tj| completion of the reaction, as monitored by thin-layer
[16] and silica gel in the presence of bgdd], catalysts  chromatography (TLC). After completion of the reaction,
have been employed successfully. Recently, nanomaterialghe catalyst was centrifuged, water was added to the super-
have become potential candidates for wide and divergentpatant solution, and the final product of the reaction was
applications that include biomedicals, pharmaceuticals andextracted with ethyl acetate. The protocol involving addi-
catalysis. Recently, we reported the synthesis of chiral epoXytion of water followed by extraction with ethyl acetate is
required to separate the by-product (Et2)0) OH. The sol-
vent was removed in vacuo, and the crude product was pu-
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R" O Table 2

R NAP MgO R. H()—lll’ OF Wadsworth—Emmons reaction of different carbonyl compounds with various
0 + |olu<.n<. reflux + (OED), phosphonates catalyzed by NAP-MgO
;(\ ! H
1 (OEL), Aldehyde Phosphonate ~ Time (h)  Yield %) E:Z°
R= aryl, alkyl, cyclohexyl, furfuryl 2a: R" = COOEL CsHs 2a 18 97 99:1
R'=H 2b: R" = COOMe 4-CICsHa 2a 16 96 99:1
2¢: R"= COO'Bu 4-NO;CgHg 2a 16 98 99:1
2d: R"=CN 2-ClCgH4 2a 18 81 98:2
2e: R'=Cl 2-NO,CoHg 2a 18 83 96:4
_ _ 4-MeGsHg 2a 21 76 99:1
Scheme 1. WE reaction between various benzaldehydes and phosphonate3.opecH, 2a 22 69 99:1
catalyzed by NAP-MgO. C4H30 2a 20 78 99:1
CgH13 2a 18 86 99:1
of activity after activating at 250C for 1 h under nitrogen  CsHig 2a 19 83 99:1
flow. —CCeH11 2a 17 85 99:1
2-CoH7 2a 18 63 99:1
t-CeHsCH=CH  2a 18 86 99:1
_ _ CeHs 2b 18 96 99:1
3. Results and discussion 4-ClCsHq 2b 17 98 99:1
4-NO;CgHg 2b 17 98 99:1
Various magnesium oxide crystals [commercial MgO, j"\é'&cﬁ"';‘_' ;g g; ;i ggfi
CM-MgO (30n?/g); conventionally prepared MgO, NA- C;HSSQ’ 4 b 18 73 991
MgO (252nt/g); aerogel prepared MgO, NAP-MgO CeHis 2b 19 86 99:1
(590 n?/g)] were evaluated in the WE reaction between ben- —ccgH, 2b 19 83 99:1
zaldghyde and trlethylphosphonoacet.aye to understand theC6H5 2 19 89 991
relation between structure and reactivity. All these MgO cgHs 2d 17 97 77:23
crystals catalyze the WE reaction with quantitative yields. 4-CICsH4 2d 17 96 71:29
However NAP-MgO shows higher reactivity over NA-MgO ~ 4-NO2CeHa 2d 16 97 66:34
and CM-MgO {Table ). Pleased with these results and to 4-MeCeHa 2d 21 83 89:11
iden th NAP-MaO din WE ¢ 4-OMeGsHg4 2d 21 78 83:17
widen the scope, gO was tested in reaction of - 4+H30 od 18 94 81:19
further aromatic, aliphatic, cyclic and heterocyclic aldehy- csH,, 2d 19 82 74:26
des with phosphonates. As expected the rate of the reaction-cCsHi: 2d 19 76 69:31
is faster with benzaldehyde carrying electron-withdrawing 2-CioH7 2d 20 78 79:21
groups than the reactants bearing electron-donating groupscsHs 2e 19 87 99:1

(Table 2. When the benzaldehyde is substituted either with ~a solated yield.

an electron-withdrawing group or donating group at the 2- ° Based ontH NMR.
position the rate of the reaction is sloWaple 3. The scope

of the reaction is also extended to various phosphonates in-
cluding methyl, ethylf-butyl, cyano- and chloro-substituted
ones. In all cases, yields are quantitative with higHa ra-

tios of 99:1 under optimized conditions, whereas the di-
ethylcyanomethylphosphonate giveZ ratio from 89:11 to
66:34. The increase i@ isomer is due to the lesser steric
requirement of the linear cyano group. The catalyst was re-
cycled three times without loss of activitygble 1. Before
reuse the catalyst is activated by heating atZ5@nder ni-
trogen flow for 1 h.

To understand the relation between structure and reactiv-
ity, itis important to know the structure and nature of the reac-
tive sites of NAP-MgO. NAP-MgO has a three-dimensional
polyhedral structure, with the presence of high surface
concentrations of edge/corner and various exposed crystal
planes (such as 002, 001, 111). This leads to inherently
high surface reactivity per unit area. Thus, NAP-MgO indeed
displayed the highest activity compared to NA-MgO and CM-
MgO. Besides this, the NAP-MgO has Lewis acid site?¥]g
Lewis basic sites & and O, lattice bound and isolated
Bronsted hydroxyls, and anionic and cationic vacandiek

Table 1
Wadsworth—Emmons reaction between benzaldehyde and triethylphospho- WE reactions are known to be driven by base cata[@#nd
noacetate with various catalysts accordingly the surfaceOH and G~ of these oxide crystals
Catalyst Time (h) Yield (%0 are expected _to trigger these r_eactlons. To examine the role
NAP-MGO 818 97 97 of —OH, the Sil-NA-MgO and Sll-NAP—MgQZO], d_ev0|d of
NA-MgO 36 95 free—OH groups were tested in WE reactions. It is found that
CM-MgO 48 90 the silylated MgO samples need longer reaction times than
Sil-NAP-MgO 36 90 the corresponding MgO samples in WE reactidakie .
Sil-NA-MgO 50 90 NAP-MgO is having polyhedral structure and NA-MgO is

a solated yield. having hexagonal platelets with same average concentration

® Third cycle. of —OH groups [20-22] A possible rationale for the
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display of higher reactivity to unsaturated esters, nitriles by [3] K.C. Nicolaou, M.W. Harter, J.L. Gunzner, A. Nadin, Liebigs
NAP-MgO is that the-OH groups present on the edge and Ann./Recueil. (1977) 1283.
corner sites on NAP-MgO are more isolated and accessible [4] B-J- Walker, in: J.I.G. Cadogan (Ed.), Organophosphorus Reagents

. . in Organic Synthesis, Academic Press, London, 1979, p. 155.
for the reactants. NAP-MgO has single crystallite polyhedral [5] A.W. Johnson, Ylides and Imines of Phosphorous, Wiley, New York,

structure, which is having the presence of high surface con- =~ 1993, p. 307.

centrations of edge/corner and various exposed crystal planes(6] S. Sano, K. Yokoyama, M. Fukushima, T. Yagi, Y. Nagao, Chem.
(suchas002,001,111),leadstoinherently high surfacere-  Commun. (1997) 559.

activity per unit area. Thus, NAP-MgO indeed displayed the [71 S- Sano, T. Ando, K. Yokoyama, Y. Nagao, Synlett (1998) 777.

. .. [8] M.W. Rathke, M. Nowak, J. Org. Chem. 50 (1985) 2624.
highest activity compared to NA-MgO and CM-Md@3]. [9] K. Ando, J. Org. Chem. 62 (1997) 1934.

[10] K. Ando, J. Org. Chem. 63 (1998) 8411.

[11] K. Ando, J. Org. Chem. 64 (1999) 8406.

[12] K. Ando, Synlett (2001) 1272.
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active reusable catalyst in the WE reaction under mild con- [14] F. Texier-Boullet, D. Villemin, M. Ricard, H. Moison, A. Foucaud,
ditions without any side reactions such as Knoevenagel and___Tetrahedron 41 (1985) 1259.
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